
Pergamon
09668349(95)00005-4

Locarion Science, Vol. 3, No. 1, pp, 39-53, 1995
Elsevier Science Ltd

Printed in Great Britain.
09668349/95 $9.50 + 0.00

A BRANCH-AND-BOUND ALGORITHM FOR DEPOT
LOCATION AND CONTAINER FLEET MANAGEMENT

BERNARD GENDRON and TEODOR GABRIEL CRAINIC
Centre de recherche sur les transports, Universiti: de Mont&al, C.P. 6128 Succursale centre-ville, Mont&al, QC

H3C 357. Canada

(Received 25 August 1992)

Abstract-The multicommodity location problem with balancing requirements is related to one of
the major logistics issues faced by distribution and transportation firms: the management of a fleet
of vehicles over a medium to long term planning horizon. To solve this problem, we present a
branch-and-bound algorithm in which bounds are computed by a dual-ascent procedure. We
particularly emphasize the design of efficient branching, fathoming and preprocessing rules. The
algorithm was tested on a wide variety of randomly generated problems, and on a large-scale
application to the planning of the land operations of a heterogenous container fleet. Results show
that the algorithm is highly efficient, and outperforms other existing methods.

Keywords: Branch-and-bound, dual-ascent, multicommodity location with balancing requirements.

R&urn&-Le problkme de localisation multiproduit avec exigences d’kquilibrage est relik g un des
aspects importants de la planification logistique des entreprises de transport et de distribution, soit
la gestion 1 moyen et long termes d’une flotte de vthicules. Nous prksentons un algorithme de
siparation et ivaluation progressive (branch-and-bound) qui calcule des bornes au moyen d’une
mkthode d’ascension duale et qui met en Cvidence des rkgles efficaces de branchement, de cessation
de fouille et de fixation de variables. L’algorithme a tri: testi sur une grande variktk de probkmes
gkkrks aliatoirement, ainsi que sur une application de grande taille au problbme de la planification
du transport terrestre de conteneurs. Les rksultats montrent que l’algorithme est extremement
efficace et qu’il l’emporte sur les autres mtthodes propokes dans la littrature.

Mats-cl&: Branch-and-bound, mkthode d’ascention duale, problkme de localisation multiproduit
avec exigencess d’kquilibrage.

1. INTRODUCTION

The multicommodity location problem with balancing requirements was first introduced
by Crainic, Dejax and Delorme (1989). The problem is motivated by the following industrial
application, related to the management of a heterogeneous fleet of containers by an
international maritime shipping company. Once a ship arrives at port, the company has
to deliver loaded containers, which may come in several types and sizes, to designated
inland destinations. Following their unloading by the importing customer, empty containers
are moved to a depot. From there, they may be delivered to customers who request
containers for subsequent shipping of their own products. Furthermore, containers often
have to be repositioned to other depots. These interdepot movements are a consequence
of the regional imbalances in empty container availabilities and needs throughout the
network: some areas lack containers of certain types, while others have surpluses of them.
This requires balancing movements of empty containers among depots, and thus differen-
tiates this problem from classical location-allocation applications. The general problem is
therefore to locate depots in order to collect the supply of empty containers available at

39

40 BERNARD GENDRON and TEODOR GABRIEL CRAINIC

customers’ sites and to satisfy the customer requests for empty containers, while minimizing
the total operating costs: the costs of opening and operating the depots, and the costs
generated by customer-depot and interdepot movements.

Crainic, Delorme and Dejax (1993) show that standard location methods are not efficient
for this problem, but their branch-and-bound algorithm cannot prove the optimality of
the solution in a reasonable amount of time, except for simple data instances. Consequently,
heuristics were proposed to solve the problem. Crainic and Delorme (1993) present a
dual-ascent procedure which generally produces tight bounds, but still can exhibit large
gaps on particular instances. An adaptation of the tabu search metaheuristic (Crainic,
Gendreau, Soriano and Toulouse, 1992) generally obtains better solutions, but requires
rather large computing times.

In this paper, we present an exact branch-and-bound algorithm which combines an
improved dual-ascent bounding procedure, with efficient branching, fathoming and
preprocessing rules. In Section 2, we formulate the model and derive lower bounds that
define a dual-ascent procedure similar to the one proposed by Crainic and Delorme (1993).
Section 3 gives an overview of the branch-and-bound algorithm and discusses issues related
to the design of branching, fathoming and preprocessing rules. Extensive experiments
conducted both on a wide variety of randomly generated problems and on data from a
large-scale application are used to identify the most efficient branch-and-bound design and
to compare it to other algorithmic approaches. The computational results of these
experiments are reported and analyzed in Section 4.

2. PROBLEM FORMULATION AND BOUNDS

To formulate the problem, we consider a directed network G = (N, A), where N is the
set of nodes and A is the set of arcs. Moving through the network, there are several
commodities (types ofcontainers), represented by set P. The set of nodes may be partitioned
into three subsets: 0, the set of origin nodes (supply customers); D, the set of destination
nodes (demand customers); and T, the set of transhipment nodes (depots). For each depot
j E T, we define O(j) = {i E 0 : (i, j) E A} and D(j) = {i E D : (j, i) E A}, the sets of customers
adjacent to this depot, and we assume that there exists at least one origin or destination
adjacent to each depot j (O(j) u D(i) # 0). For each node i E N, we define the sets of depots
adjacent to this node in both directions: T+(i) = {je T :(i, j) E A}, and T-(i) = { je T:
(j, i) E A}. Since it is assumed that there are no arcs between customers, the set of arcs may
be partitioned into three subsets: customer-to-depot arcs, A,, = {(i, j) E A : i E 0, j E T);
depot-to-customer arcs, A,, = {(i, j) E A: iE IT; je D}; and depot-to-depot arcs,
A,,={(i,j)~A:ifzT,j~T}.

The problem consists of minimizing costs incurred by moving flows through the network
in order to satisfy supplies at origins and demands at destinations. For each supply customer
i E 0, the supply of commodity p is noted 04, while for each demand customer i ED, the
demand for commodity p is noted df. All supplies and demands are assumed to be
nonnegative and deterministic. A nonnegative cost CC is incurred for each unit of flow of
commodity p moving on arc (i, j). In addition, for each depot j E T, a nonnegative fixed
cost fi is incurred if the depot is opened.

Let xG represent the amount of flow of commodity p moving on arc (i, j), and yj be the
binary location variable that takes value 1 if depot j is opened, and value 0 otherwise. The
problem is then formulated as:

A branch-and-bound algorithm for depot location 41

Z = min C fjyj + 1
jeT

js;,il xj”i = dp Vi E Q P E p (3)

ieD ksT’(j) isO keT_(j)
(4)

x; < opyj Vj E IT; i E O(j), p E P (5)

Xj"i ~ dPyj Vj E T i E D(j), p E P (6)

xyj > 0 V(i, j)E A, p E P (7)

YjE i”, l> Vje T (8)

Constraints (2) and (3) ensure that supply and demand requirements are met, relations
(4) correspond to flow conservation constraints at depot sites, while equations (5) and (6)
forbid customer-related movements through closed depots. Note that analogous constraints
for the interdepot flows are redundant if interdepot costs satisfy the triangle inequality
(Crainic, Dejax and Delorme, 1989), an assumption that we follow throughout this text.

Lower bounds on the optimal value of this problem may be derived by considering the
strong relaxation, obtained by replacing the integrality constraints (8) by yj 2 0, Vj E T The
dual of the resulting linear program, noted 9, may be formulated as:

Zg= max 1
i

c o:pLp + c df’vf
I

(9)
PEP ie0 isD

‘g - 2; - y; < cfj v(i, j) E &T, p E p (10)

vp + 2; - yj”, < c$ %, i) E AT,, p E p (11)

Lp - If: < CTk v(jy k)EATT, PEP (12)

+

Of'$ + C dfy;i <A VjE T (13)
PEP ieO(j) ieD I

yyj > 0 v(iy j) E &T? p E p (14)

r$ 2 0 v(j? i) E ATD, P E p. (15)

Here, pp and VP are the dual variables associated with, respectively, the supply and demand
constraints (2) and (3), AT are linked to the balancing constraints (4), while yz and $
correspond to constraints (5) and (6), respectively.

Our approach to computing bounds is inspired by Crainic and Delorme (1993). They
derive two subproblems of 3 one obtained by fixing nonnegative y variables to values
satisfying constraints (13), and the other by fixing 1 variables to values satisfying relations
(12). Here, we derive the two subproblems by relating them to Lagrangean relaxations of
the original problem.

42 BERNARD GENDRON and TEODOR GABRIEL CRAINIC

The first subproblem may be obtained by dualizing constraints (5) and (6), using
nonnegative y multipliers:

C cP$ + C dfytjq: Yj
ieO(j) ieD

1 { C (CC + $)X6 + C (CTi + yTi)Xj4: + C
PEP (i, j)EAOT (j. i)eArD (j,kbA,,

subject to constraints (2)-(4), (7) and (8). This subproblem decomposes into two parts: one
that depends only on the flow variables and the other only on the location variables. This
last part of the subproblem may be solved easily, without considering the integrality
constraints (8):

zT mink, fi - zp (c OPYC + c &‘$i)]. (17)
isO icD(j)

Thus, for fixed values of the y multipliers, the Lagrangean subproblem has the integrality
property (Geoffrion, 1974), since its optimal value can be obtained even with the integrality
conditions relaxed. Consequently, the best lower bound on the optimal value of the original
problem one can hope for when using this Lagrangean relaxation can be obtained by
restricting the y multipliers to values that satisfy constraints (13). For such values, the
Lagrangean subproblem is equivalent to the following subproblem, called FLIP relaxation:

subject to constraints (2H4) and (7).
This problem is a multicommodity uncapacitated minimum cost network flow problem

(MCNF), and thus decomposes into (P 1 single-commodity uncapacitated minimum cost
network flow problems (for a recent survey of methods for solving this type of problem,
see Ahuja, Magnanti and Orlin, 1993). From an optimal solution to this subproblem, an
upper bound on the optimal value of the original problem may be easily computed by
setting yj to 1 whenever there is flow moving through depot j, and to 0 otherwise.

The second subproblem may be derived by relaxing the balancing constraints (4), and
by introducing them into the objective with 1 multipliers:

Z(n) = min C fiyj + 1
(4 + wj (19)

JET
psp

1,

(I ;*

OT

+ tj,izArD (‘$ - n,P>xj”, + 1 ($k - (AT - ‘%?)xTk

(j,k)eA,, I

subject to constraints (2), (3) and (5H8). Note that the xTk variables are nonnegative and
appear only in the relaxed balancing constraints (4). Thus, by restricting the multipliers to
values satisfying constraints (12) of g,we obtain the following subproblem, called FLOP
relaxation :

Z(i) = min C fj_Vj + 1 1 (+i - AJP)xiq, (20)

joT
p E p

i

(, jzA Cc: + n$$ +

I. or Cj, 0s A,,

subject to constraints (2), (3), and (5H8).

A branch-and-bound algorithm for depot location 43

This problem is an uncapacitated location problem (ULP), also called simple plant location
problem (Krarup and Pruzan, 1983), and uncapacitated facility location problem (Cor-
nuejols, Nemhauser and Wolsey, 1990). One of the most efficient methods for solving the
ULP is the DUALOC algorithm proposed by Erlenkotter (1978). The algorithm works on
a condensed formulation of the dual of the linear relaxation, in which the y variables do
not have to be explicitly computed. From any dual solution, the algorithm derives a primal
solution satisfying the integrality constraints. The couple of primaldual solutions thus
obtained may violate some of the complementary slackness conditions. Through a
dual-ascent procedure, which starts with some initial dual solution, the algorithm
incrementally adjusts the dual variables to reduce complementary slackness violations. The
algorithm also incorporates an adjustment procedure that tries to increase the dual objective
value through decreasing some dual variables while increasing others. The dual solution
thus obtained is not necessarily optimal for the dual of the linear relaxation of the ULP,
but it provides a lower bound of good quality with a rather limited computational effort.
For complete details of the method, the reader is referred to Erlenkotter (1978) and Van
Roy and Erlenkotter (1982). For our purposes, it is sufficient to recall that the initial dual
solution must satisfy the following conditions:

ppa min (c5+1!} ViEO,pEP(of>O)
js T+(i)

(21)

VP 2 min {cTj - A$‘] Vi ED, p E P(dy > 0). (22)
jET_(i)

An upper bound on the optimal value of the original problem may be easily derived from
a primal solution jj obtained by DUALOC, by solving a related MCNF:

(23)

subject to (2)-(4), (7) and

xb<ofjj VjCEiiEO(j),pEP (24)

xTi < dfjjj VjET, iED(PEP. (25)

The FLIP and FLOP relaxations may be solved iteratively, by using as input to one
the multipliers generated by the other. One then obtains an increasing sequence of lower
bounds. To justify this assertion, first note that any feasible dual solutions to problems
FLIP and FLOP are also feasible to problem 5% since the multipliers are fixed at values
that satisfy the dual constraints. Furthermore, recall that problem FLIP is solved to
optimality, while a dual-ascent procedure (DUALOC) is used to compute a lower bound
to problem FLOP. Hence, if an optimal dual solution to problem FLIP can be used directly
as input to DUALOC, the dual objective is guaranteed to increase. Indeed, this is the case
since any optimal dual solution (p, v, 1) to problem FLIP satisfies conditions (21) and (22).
To prove this, we may proceed by contradiction as follows: suppose, without loss of
generality, that there exists i E 0, p E P (of > 0), such that pLp < minjs T+(i) (cc + A;> = C& + A$.
Since the y multipliers are nonnegative, &’ < c& + $. + y&. Then, there exists <r > 0 such
that pLp + 97 < ct. + J$ + $.. Consequently, by setting ji4 = pf + <p, we obtain a feasible
solution to the dual of problem FLIP for which the objective increases strictly by a quantity

44 BERNARD GENDRON and TEODOR GABRIEL CRAINIC

of<: > 0. But this contradicts the fact that (CL, v, 1) is an optimal solution to problem FLIP.
Note that, after solving the FLOP relaxation, the y multipliers can be increased by

removing some proportion of the slack that may appear in the dual constraints (13). The
resulting gamma adjustment rule (Crainic and Delorme, 1993) consists in adding the term
eSj/Aj to each y multiplier related to depot j, where 0 < 8 < 1, and sj is the slack variable:
sj =fj - CpsP(xirouJofYfj + Ci,Dc,?df’$), and Aj = xpEP(&eo(jJoP + xi.D(,>df’)*

3. BRANCH-AND-BOUND ALGORITHM

The general idea of a branch-and-bound (BB) algorithm is to try to solve the original
problem, and, in case of an unsuccessful attempt, to decompose it into easier subproblems,
by using a branching rule. These subproblems are further divided, unless their optimal
solution is found or it is determined that they cannot lead to an optimal solution to the
original problem @thoming rules). For each generated subproblem, preprocessing rules may
also be applied in order to delete redundant constraints, or to fix some variables.

We adapt these ideas to design an exact algorithm to solve the multicommodity location
problem with balancing requirements. For each generated subproblem, we apply a
procedure to obtain lower and upper bounds based on the developments presented in
Section 2. These bounds are used to define efficient fathoming and preprocessing rules. To
represent location variables that are fixed through branching and preprocessing rules, we
define the sets T,, = { je T: yj E (0, l}}, T, = 0 E T: yj = 0}, and TI = {j E T: yj = l} of
free, closed, and open depots, respectively. To generate subproblems from a given subproblem
S, we use a dichotomic branching rule: a depot j* E T,, is chosen according to some
criterion, and SC is obtained by transferring j* to T,, while SC results from transferring j*
to TI. According to the terminology of trees, SC and ST are the O-son node and the l-son
node, respectively, of thefather node S, and the original problem, where all depots are free,
is the root node. To decide which generated subproblem should be examined in priority,
we use the depth-$rst rule: choose one of the subproblems that has been generated most
recently. This rule minimizes computer storage requirements (Ibaraki, 1987), although it
may generate a large number of subproblems. However, when a good heuristic is used to
compute efficient upper bounds, as is the case here, this disadvantage may be reduced.

Formally then, the BB algorithm keeps a stack A of generated subproblems, as well as
the value 2” of the best solution identified thus far, and proceeds as follows:

(1) (initialization) S is the original problem: T,, t T, T, c @, TI c 0. A t 0.2” t + co.
(2) (preprocessing rule) Attempt to fix some variables (T,, , T, and TI may be modified).
(3) (bounding procedure) Perform the bounding procedure on S (2” may be updated); if S

may be fathomed, goto 5.
(4) (branching rule) Choose j* E T,, and generate SC and ST; select one of them to examine

next, as subproblem S, and add the other to A. Goto 2.
(5) (stopping test) If A = 0, STOP; 2” is the optimal value of the original problem.
(6) (backtracking) Select the subproblem S on top of A. If it may be fathomed goto 5,

otherwise, goto 2.

The performance of the algorithm is mainly influenced by three factors: the tightness of
the bounds, the ability to avoid unnecessary computations through fathoming and
preprocessing rules, and the way subproblems are generated and selected. We examine
these issues in the remainder of the section.

A branch-and-bound algorithm for depot location 45

3.1. Bounding procedure

The following dual-ascent bounding procedure is executed at Step 3 of the BB algorithm.
Lower bounds are computed on the optimal value Za of the modified dual g, which is
obtained from 9 by adding the constant term Ej,r,fj to the objective function,and by
replacing the fixed c_osts fj (j E T) in c_onstraints (13) by the modified fixed costs fj (j E 7’),
defined as follows: fj = fj, if jE T,,; fi = + 00, if jE T,; fj = 0, if je Tl. The FLIP-FLOP
procedure may then be formally stated as follows:

(1) (initialization) Initialize y, Zf, a lower bound on ZB, and Z”, an upper bound on Z.
Set the iteration counter t to 1.

(2) (integrality test) If T,, = 0, compute an upper bound Z: on Z by solving an MCNF;
if g < Z”, Z” + Z:; STOP.

(3) (lower bound) Compute a lower bound Z: on Zaeither by solving the FLIP relaxation
(if t = 1 mod 2), or by applying DUALOC to the FLOP relaxation (if t = 0 mod 2).

(4) (lower bound test) If Z: 2 Z”, STOP.
(5) (upper bound) Compute an upper bound Z: on Z either from the optimal solution of

the FLIP relaxation (if t = 1 mod 2), or by solving an MCNF derived from the best
primal solution to the FLOP relaxation identified by DUALOC (if t = 0 mod 2).

(6) (upper bound update) If zl: < Z”, Z” +- q.
(7) (stopping test) If Z” - Z: < s1 Z: or Z: - Z:_ 1 < e2Zf- 1 or t = t,,,, STOP.
(8) (preprocessing rule) Attempt to fix somes variables (T,,, T, and Tl may be modified).
(9) t t t + 1. Goto 2.

To initialize the procedure, two extremal strategies are possible. In restarting mode,
which is the default at the root node, y and Zb are initialized to 0. In recuperation mode,
we use the values generated at the father node to initialize y and Zb. In all cases, Z” is
initialized to the value of the best solution identified thus far by the BB algorithm.

The procedure starts with a FLIP, a choice experimentally proven to be superior (Crainic
and Delorme, 1993). Indeed, if a FLOP is first solved, one does not take into account the
influence of the balancing flows. In particular, some depots may be given very large values
for their associated y multipliers, and consequently become “unattractive”, although they
might subsequently be required in order to satisfy the balancing constraints.

Note that the lower bound test performed at Step 4 includes the usual feasibility test
that stops computations when the relaxation is determined to be infeasible. Indeed, we
assume in our description that any infeasible subproblem takes an infinite optimal value.

The stopping test uses three parameters el, .s2 and t,, that can be adjusted by the user.
The first stops the procedure when the relative gap between the lower and upper bounds
is sufficiently small, the second comes into play when the lower bound has not sufficiently
increased from one iteration to the next, while the third limits the number of iterations.

3.2. Fathoming and preprocessing

A first obvious fathoming criterion, performed at Step 4 of the FLIP-FLOP procedure,
eliminates a subproblem with a lower bound higher than Z”. Two properties can be used,
however, to implement stronger fathoming and preprocessing rules to either eliminate
subproblems from further examination or to reduce the number of variables considered
when computing bounds.

46 BERNARD GENDRON and TEODOR GABRIEL CRAINIC

The first property, based on dual information, makes use of the slack variables associated
with constraints (13):

Slack Property: Let S be a subproblem, 2’ be a lower bound on Za corresponding to a
feasible solution (p, v, R, y) of the dual 3 Z” be an upper bound on Z, and j E T,, . If
(Z’ + sj) > Z”, then yj = 0 in any optimal solution to S.

To see that this property holds, it suffices to show that (Z’ + sj) is a lower bou_nd on Z(S’,),
the optimal value of the l-son of S obtained by transferring j to Tr . Since fi = 0 in the
formulation of S’, , the y multipliers associated to j are all equal to 0. Then, a dual feasible
solution to S{ can be obtained from (cl, v, 1, y) by setting #’ = pf - y$ Vi E O(j), p E P, and
$’ = uf - yj”,, Vi E D(j), p E P, while all other variables are kept at their current values. But
the value of this solution is precisely Z’ +fj - ~~eP(~ioO(j~O~~~ + Ci,,,j,dpyjq,) = Z’ + sj.

A second property that can be used as a preprocessing rule determines when a depot
must be opened in order to satisfy supply and demand requirements:

OD Property: Let S be a subproblem. If, for a given commodity p, there exists an origin
(destination) i with 04 > 0 (dp > 0) such that only one depotj is adjacent to i, then y, = 1
in any feasible solution to S.

Among the possibilities to exploit these properties, we selected two for subsequent
experiments. The slackfathoming rule consists of using the Slack Property as a fathoming
rule when a l-son node is generated at Step 4 of the BB algorithm. The slack preprocessing
rule applies the Slack Property to fix variables at Step 8 of the FLIP-FLOP procedure,
and when some depots are being closed, it also makes use of the OD Property. In this
case, the OD Property is only applied once a FLOP relaxation has been solved, since to
use the test after a FLIP would require dual values to be modified in case depots are
opened, which would be rather inefficient. The Slack Property is also used each time a
l-son node is selected at Step 6 of the BB algorithm, assuming the relevant information
from its father has been saved. Finally, the OD Property is used at Step 2 of the BB
algorithm, when the root node or a O-son is considered.

Another technique that may be used to avoid unnecessary computations is the bound
elimination test. Used in conjunction with the recuperation initialization strategy, this test
eliminates, for some subproblems, the need to apply the bounding procedure at Step 3 of
the BB algorithm. To use the test, four assumptions must be satisfied: a O-son node, Sjbt,
is considered; when solving its father node, the last iteration of the FLIP-FLOP procedure
was a FLIP; in the optimal solution that was found to this FLIP problem, there was no
flow circulating through depot j*; and, finally, when considering SC, no depot is opened
by using the OD Property at Step 2 of the BB algorithm. Then, since SC is obtained from
its father by closing depot j*, and no depot is being opened due to the OD Property, the
lower bound that would be computed by solving a FLIP on SC must be equal to the lower
bound generated when solving the father. Thus, the FLIP-FLOP procedure would be
stopped immediately by the application of the stopping test, assuming, of course, that Zb
is initialized to the value of the lower bound at the father node.

3.3. Branching rules

Branching rules are used to choose the next depot variable to fix (j* in Step 4 of the
BB algorithm), and to determine which subproblem should be examined first: Sjd or ST.

A branch-and-bound algorithm for depot location 47

We distinguish two categories of branching rules: primal rules make use of the information
obtained when computing the last upper bound, while dual rules exploit the dual variables
generated while computing the last lower bound.

From prior experiments, it was found that the most promising primal rules compare the
“positive” activity at depot j, as measured by customer-depot flows circulating through j,
to the fixed cost required to open depot j. Crainic, Delorme and Dejax (1993) use similar
rules in their BB algorithm, and succeed in rapidly finding good solutions. Formally, given
a solution x to an upper bound subproblem, one computes

x.i=C C
I (

4 + (j,zA,, xF)/l;) WE T,, (26)
PEP (i.ik&

to define the two rules:

X, rule: Choose j* = arg minjs r,, (Xj} and select first subproblem Sj,‘.
X, rule: Choose j* = arg maxjET,, and select first subproblem S’y.

A first class of dual rules is based on the observation that relatively large negative values
of Ag imply that depot j tends to attract more flow of commodity p than it sends to
customers. A similar argument applies when the 2: have large positive values. Thus, a large
value of 1 A.;) indicates that depot j has significant shortage or surplus of commodity p,
resulting in interdepot balancing flows. Hence, using the same rationale as for the primal
rules defined above, one measures

to define the two rules:

(27)

A0 rule: Choose j* = arg minjsT,,{Aj} and select first subproblem Sj,‘.
A, rule: Choose j* = arg maxjET,, {Aj} and select first subproblem Sy.

A second class of dual rules compares the fixed cost to open depot j to the values of its
related y multipliers. One makes use of the slack variables sj associated to constraints (13)
of 3, to define the two rules:

To rule: Choose j* = arg maxjeT,, and select first subproblem Sjd.
Tr rule: Choose j* = arg minj, r,, {sj} and select first subproblem ST.

4. EXPERIMENTAL RESULTS

The experimentation aims at identifying the most efficient branch-and-bound design,
and is centered around five main issues:

Gamma adjustment: What is the influence of the gamma adjustment rule on the efficiency
of the algorithm? In particular, for which values of 8 do we obtain the best performance?
Restarting versus recuperation: Which initialization strategy is the most efficient?
Stopping parameters: For how long should the FLIP-FLOP procedure be executed?
What is the “ideal” tradeoff between the number of generated subproblems and the
time spent solving each of these subproblems?
Slack fathoming versus slack preprocessing: What is the most efficient way to use the
Slack Property, through fathoming or preprocessing?
Branching rule: Which branching rule is the most efficient?

48 BERNARD GENDRON and TEODOR GABRIEL CRAINIC

To answer these questions, we implemented the algorithm in FORTRAN/77, using the
primal simplex code RNET (Grigoriadis and Hsu, 1979) to solve uncapacitated minimum
cost network flow problems. In order to solve uncapacitated location problems, we coded
our own multicommodity version of DUALOC (Erlenkotter, 1978). The dual-ascent phase
follows Erlenkotter, while the adjustment step is the primaldual procedure of Van Roy
and Erlenkotter (1982). This adjustment phase is repeated as long as the dual objective
continues to increase. The code was compiled with thefl7 compiler using the - 0 option,
and all experiments were performed on SUN Spard workstations.

The tests are conducted on randomly generated problems (the generator is described in
Crainic, Delorme and Dejax, 1993) and on data based on an actual large-scale application.
Table 1 displays the dimensions of the test problems, where problems Pi to Pi, and Pi,
to p,, are, respectively, medium and large-size randomly generated instances, while
problems PZs to P,, are based on the actual application. The parameter F, the last column
of the table, indicates the relative importance of the fixed costs. For randomly generated
problems, two levels, 1 and 2, are used, while levels 14 define the instances based on the
actual data. In fact, a problem at level i (i > 1) is obtained from a problem at level i - 1
by multiplying the fixed costs by 10. Thus, for example, problems P, and P, are the same
except for this modification.

A first experiment is dedicated to determining the relative efficiency of the branching
rules. For each data instance, the six branching rules are tested, executing the BB algorithm

Table 1. Dimensions of the test problems

Prob IPI 101 IDI I TI IA,,1 l&l F

p,
p2
p3
p4
p5
p.5
p,
PS
p9
P 10

P 11

P I2

P 13

P 14

P 15

P 16
P 17

P 18

P 19

P *cl

P 21

P 22
P 23

P 24

P 25

P 26
P 27

P 28

125 125
125 125
125 125
125 125
124 124
124 124
125 125
125 125
124 124
124 124
124 124
124 124
219 219
219 219
219 219
219 219
220 220
220 220
219 219
219 219
219 219
219 219
220 220
220 220
289 289
289 289
289 289
289 289

25 875 875 600
25 875 875 600
25 879 879 600
25 879 879 600
26 871 871 650
26 871 871 650
25 875 875 600
25 875 875 600
26 868 868 650
26 868 868 650
26 869 869 650
26 869 869 650
44 2630 2630 1892
44 2630 2630 1892
44 2630 2630 1892
44 2630 2630 1892
43 2641 2641 1806
43 2641 2641 1806
44 2629 2629 1892
44 2629 2629 1892
44 2629 2629 1892
44 2629 2629 1892
43 2647 2647 1806
43 2647 2647 1806
87 1810 1810 746
87 1810 1810 746
87 1810 1810 746
87 1810 1810 746

1
2
1
2
1
2
1
2
1
2

A branch-and-bound algorithm for depot location 49

up to 1000 iterations. No gamma adjustment is used, and the recuperation initialization
strategy and slack fathoming rule are implemented. The stopping parameters are given the
following values: e1 = s2 = 0.01, and t,, = 10. Other algorithmic options display the same
general behavior with respect to the relative performance of the branching rules. Table 2
shows, for each problem and each branching rule, the number of iterations performed
(“generated nodes”). When the algorithm is stopped before proving optimality of the best
solution found, a “ + ” indicates that an optimal solution was obtained, while a “ - ” denotes
the contrary.

Table 2. Tests on branching rules (generated nodes)

Prob

p*
p9
P 10

P 11

P 12

P 13

P 14

P 15

P 16

P 17

P 18

P 19
P 20

P 21

P 22

P 23

P 24

P 25

P 26

P 27

P 28

263
161
63
390
599
45
316
354
318
120
282
101
146
513

1OOU
100
370
226

1000~
1000-
1000+

498

:EE +

201
585

1000+
228

389
816
733

1000+
1000-

110
682

1OOV
270
330
257

1000~
1000+
1OOC
1OOw

332
1000~

282
1000-
1OOC-
1000 -
1000~ 488 1000-
1OOW 1000- lOOF
1OOo+ 1000+

114 201
361 585
837 1000+
163 228

267 205
157 936
61 289

465 503
592 1000-
44 64
326 705
354 1OOV
328 219
119 211
268 273
684 504
169 712
556 1OOV

lOOF 1000-
108 178
393
221

1ooo-
1OOV
1000+

1000~
453

1ooO-
1OtX-
1OOW

1000+
149
509

1000~
159

326
84
70
116
695
31
565
628
112
188
195
787
114

1000+
1000~

60
431
64

1000+
1000+
1000+

200
1000+
1000’

51
253
260
89

1000+
1000+

877
lOOF
1000+

153
1000+
1000+

383
142
460

1000+
1000+
1OOV
1000-
tOOO+
lOOK
looO_
1OOC-
1000-
1000-
1000~
iOOW
1000+

165
626
499
128

A few conclusions emerge from the experiment. In particular, the rules that select first
a l-son node are generally outperformed by the corresponding rules that explore first a
O-son node. Also, the X, and A, rules behave almost identically since they both measure
the “importance” of a depot in terms of the flow component of the problem. However,
the A, rule should be preferred since it is computationally less expensive. These rules are,
however, clearly outperformed by the IO rule, especially when applied to solve large-size
problems. The superiority of this rule may be easily explained since it combines powerfully
with the Slack Property to reduce the number of generated subproblems. Therefore, our
general conclusion is that the I-,, rule is preferable and should be used in all cases.

The way to exploit the Slack Property, through either fathoming or preprocessing, and
the gamma adjustment rule are the objects of a second experiment. We only report the
results of the extremal adjustments: no adjustment (0 = 0) and maximum adjustment (0 = l),
since prior experiments have shown their superiority over intermediate adjustments

50 BERNARD GENDRON and TEODOR GABRIEL CRAINIC

(0 < 8 < 1). This behavior may be easily explained. On the one hand, using no adjustment
maintains the slack variables at their highest values, thus preserving the strength of the
Slack Property. On the other hand, the maximum adjustment maximizes the number of
O-son nodes for which bounds are not computed at Step 3 of the BB algorithm, following
the application of the bound elimination test. Indeed, since the maximum adjustment
increases significantly the routing costs in the formulation of the FLIP problem, it yields
a better chance of identifying a network flow solution with inactive depots. In this
experiment, the To branching rule and the recuperation initialization strategy are used.
The stopping parameters are given the same values as previously. Table 3 displays, for
each problem and each combination of adjustment (0 = 0 or 0 = 1) and either fathoming
or preprocessing rules, the total number of generated subproblems (“nodes”) and the
elapsed CPU time in seconds (“time”), required to find an optimal solution.

Prob

Table 3. Fathoming versus preprocessing

Fathoming Preprocessing

0=0 B=l e=o 8=1

Nodes Time Nodes Time Nodes Time Nodes Time

PI 326 56 358 56 245 45 355
P2 84 13 98 20 67 15 67
P3 70 51 78 54 79 72 77
P.4 116 74 122 88 131 114 149
PS 695 298 707 285 507 239 617
PI5 31 24 48 27 11 24 21
P, 565 570 581 575 523 574 579
PI3 628 564 388 331 431 538 511
P9 112 17 114 18 111 16 111
P 10 188 37 67 19 149 42 103
P 11 195 131 199 139 205 154 235
P 12 787 432 401 258 441 294 423
P 13 114 52 148 61 79 35 107
P 14 1638 848 1387 872 993 911 619
P 15 29551 36606 15297 18431 6751 9707 8473
P 16 60 89 94 101 25 58 37
P 17 431 199 338 156 361 172 397
P 1s 64 42 98 52 47 39 51
P 19 4041 4371 4135 4233 6391 7022 6935
P 20 5237 4962 3028 3015 4803 5429 4201
P 21 4914 2270 5378 2451 6577 3226 8079
P 22 200 82 193 75 143 77 193
P 23 45629 40246 29009 25306 10263 10046 10355
P 24 3373 2796 1662 1412 2031 3765 1179
P 25 51
P 26 253 3496

92 109 69 123 71
303 487 195 343 303

P 27 260 384 234 311 295 1305 393
P 28 89 164 162 195 15 50 15

54
16
53
111
245
20
569
465
17
31
159
300
44
567

10217
58
174
36

7197
4215
3389

69
9440
1108
123
438
646
50

The results shown in the table demonstrate the superiority of the preprocessing option
when used to solve very difficult problems, such as P,, and P,,. For all other problems,
both options are equally effective, but still a slight advantage belongs to the preprocessing
option. The effects of the gamma adjustment rule on the performance of the algorithm is
more difficult to assess. In particular, when the preprocessing option is used, the two
extremal adjustments perform equally well. However, subsequent experiments with different

A branch-and-bound algorithm for depot location 51

stopping parameters (.sl = s2 = 0.0001) have shown that using no adjustment is generally
more efficient than performing maximum adjustment.

A third experiment explores both the initialization strategies and the adjustment of the
stopping parameters. The recuperation approach is compared to a hybrid initialization
strategy, which consists of applying the restarting mode when a subproblem is obtained
from backtracking, and recuperation otherwise. Prior experiments have demonstrated the
superiority of both methods over a pure restarting strategy. Two adjustments of the stopping
parameters are tested: a1 = s2 = E = 0.01, and E = 0.0001, along with t,,, = 10 (note that
this maximum is never achieved). The To branching rule and the slack preprocessing option
are used, and no adjustment of the y multipliers is performed. Table 4 shows the results
of this experiment, for each problem and each combination of stopping parameters (E = 0.01
or 0.0001) and initialization strategies (recuperation or hybrid).

Table 4. Recuperation versus hybrid initialization

Prob

Recuperation Hybrid

& = 0.01 E = 0.0001 & = 0.01 E = 0.0001

Nodes Time Nodes Time Nodes Time Nodes Time

PI 245
P, 67
P, 79
P, 131
P, 507
P, 11
P, 523
P* 431
P, 111
P 10 149
P 11 205
P 12 441
P 13 79
P 14 993
P 15 6751
P 16 25
P 17 361
P 18 47
P L9 6391
P 20 4803
P 21 6577
P 22 143
P 23 10263
P 24 2031
P 25 69
P 26 195
P 27 295
P 28 15

45
15
72
114
239
24
574
538
16
42
154
294
35

911
9707

58
172
39

7022
5429
3226

77
10046
3765
123
344
1305
50

113 36
45 17
41 65
47 107
159 143
7 29

263 560
59 514
77 16
45 27
75 92
105 349
39 36

235 759
1363 5604

9 69
257 173

7 44
1189 2645
307 3028
877 801
77 87

3061 6376
361 1709
69 123
193 371
63 330
3 92

43
53
39
49
167
7

221
63
51
57
49
63
35
175
727
19
91
41
741
419
359
65

635
249
75
69
169
7

18
15
65
130
167
26

462
358
13
31
85

220
39

616
3192
206
84
69

2679
3626
497
122

1790
1700
160
332
1987
61

39 19
37 16
13 33
41 213
57 94
5 31

77 354
41 438
41 14
39 21
23 61
41 230
35 45
145 583
355 2581

9 119
97 96
7 44

711 3783
267 3966
275 489
65 127

467 1918
141 1233
49 293
37 181
53 691
3 103

The results support the following general conclusion: it is preferable to spend more time
at each node computing tighter bounds than to stop the bounding procedure early in the
hope of avoiding useless work. Indeed, the hybrid strategy, which performs more work on
each subproblem treated following backtracking, is clearly superior to the recuperation
rule. Regarding the adjustment of the stopping parameters, a smaller E generally performs
better, particularly when the recuperation strategy is used.

52 BERNARD GENDRON and TEODOR GABRIEL CRAINIC

As a general conclusion, we recommend the following algorithmic design: use the To
branching rule, the slack preprocessing option, the hybrid initialization strategy, with no
adjustment of the y multipliers, and set the stopping parameters to the following values:
aI = O.OOOl,s, = 0.0001 and t,,, = 10. To assess the competitiveness of this implementation,
we compare it to other methods reported in the literature. Table 5 shows the results of
two heuristics: “TABU”, the tabu search method of Crainic, Gendreau, Soriano and
Toulouse (1992), and “DUAL”, the dual-ascent heuristic of Crainic and Delorme (1993).
For the tabu search heuristic, the results of problems P,, to P,, are not available. The
table also displays the results of an implementation of the branch-and-bound approach
(“BBWR”) of Crainic, Delorme and Dejax (1993), where a maximum of 10000 subproblems
are explored. Note that, by using this limit on the number of subproblems, optimality
could be proved for only six of the 28 problems. The last two columns of the table display
the results obtained with our method (“BBFF”). For all methods, the value of the best
solution found (Z”), rounded in thousands of units, and the elapsed CPU time in seconds
on SUN Sparc2 workstations (“time”) are indicated.

The results show that the BB algorithm outperforms the other methods, either in solution
quality, in computing times, or in both. Furthermore, it is important to note that even if the
dual-ascent heuristic generally identifies good quality solutions, it only finds an optimal
solution to 25% of the problems in our data set, while the BB algorithm improves by as
much as 1 Oh-8 % the solution of another 25 % of the problems. Hence, the extra computational
effort required by the BB algorithm is well paid off by the improvement in solution quality.

Prob

Table 5. Comparison with other methods

TABU DUAL BBWR BBFF

Z” Time Z” Time Z” Time Z” Time

p,
p2
p3
p4
p5
p,
p,
pi
p9
P 10

P 11

P 12

P 13

P 14

P I.5

P 16

P 17

P 18

P 19

P 20
P 21

P 22

P 23

P 24

P 25

P 26

P 27

P 28

42499 194
61565 176
109177 889
142063 718
69144 609
88518 498

248308 1333
291199 1050
21134 195
46014 183
93874 802
136642 727
23286 340
42310 330
65495 1103
89827 734
33271 396
56832 366
61174 922
101278 678
49026 423
76949 198
96163 811
138908 990

_

42499 1 42499
65320 5 61565
108914 3 108914
143036 17 142063
69487 6 69611
88518 16 88518

248329 3 249142
292080 45 290271
21406 1 21134
50011 6 46014
94216 9 93874
137668 22 136642
23349 5 23286
43909 52 42062
65308 14 66975
89068 25 89068
33601 7 33464
57553 26 56832
61052 20 63937
101420 59 102159
48917 7 49348
77589 12 77386
96312 16 98311
133454 18 133454
53176 5 53229
56526 9 56829
72385 41 72339
166506 32 166506

1993
69

6994
3488
4034
332

9804
9929
1926
127

5929
5890
5030
372

10298
11254
4960
5017
9552
8658
4148
4701
4148
7946
19587
19130
22919
5556

42499
61565
108914
142063
69144
88518

248178
290271
21134
46014
93874
136642
23286
42062
65230
89068
33267
56832
60959
100851
48860
75903
96114
133454
53176
56515
72339
166506

20
18
37

218
98
34
361
445
15
23
66

234
49
587

2591
126
100
47

3794
3975
493
131

1928
1241
313
201
712
122

A branch-and-bound algorithm for depot location 53

5. CONCLUSION

The multicommodity location problem with balancing requirements is related to one of
the major logistics issues faced by distribution and transportation firms: the management
of a fleet of vehicles over a medium to long term planning horizon. In the particular context
of the land transportation management of a heterogeneous fleet of containers by an
international maritime shipping company, savings of up to 40 % of the total transportation
cost of empty containers have been identified (Dejax et al., 1987) by finding approximate
solutions to the model. Furthermore, in the same context, both algorithmic and solution
efficiencies are of prime importance, since this logistics problem has to be solved regularly
due to variations in patterns of demands, transportation costs, space availability and costs
for container warehousing.

To solve the problem, we presented a branch-and-bound algorithm in which bounds are
computed by a dual-ascent procedure. Several branching, fathoming and preprocessing
rules were introduced and experimental results allowed us to identify an efficient algorithmic
design. They have also shown that the method performs well on a wide variety of problems,
including an actual large-scale application. Furthermore, for these problems, the algorithm
outperforms other methods proposed in the literature.

Acknowledgements-Financial support for this project was provided by the NSERC of Canada and the Fonds
FCAR of the Province of Qutbec.

REFERENCES

Ahuja, R. K., Magnanti, T. L. Kc Orlin, J. B. (1993) Networkflows: theory, algorithms, andapplications. Englewood
Cliffs, NJ: Prentice-Hall.

Cornuejols, G., Nemhauser, G. L. & Wolsey, L. A. (1990) The uncapacitated facility location problem. In R. L.
Francis & P. B. Mirchandani (Eds), Discrete location theory (pp. 119-168). New York: Wiley-Interscience.

Crainic, T. G., Dejax, P. J. & Delorme, L. (1989) Models for multimode multicommodity location problems with
interdepot balancing requirements. Annals of Operations Research, 18, 279-302.

Crainic, T. G. & Delorme, L. (1993) Dual-ascent procedures for multicommodity location-allocation problems
with balancing requirements. Transportation Science, 27, 9(tlOl.

Crainic, T. G., Delorme, L. & Dejax, P. J. (1993) A branch-and-bound method for multicommodity location with
balancing requirements. European Journal of Operational Research, 65, 368-382.

Crainic, T. G., Gendreau, M., Soriano, P. & Toulouse, M. (1992) A tabu search procedure for multicommodity
location/allocation with balancing requirements. Annals of Operations Research, 41, 359-383.

Dejax, P., Crainic, T. G., Delorme, L., Blise, M., de Tocqueville, E. & Hodgson, J. (1987) Planification tactique
du transport terrestre des conteneurs vides-Rapport de synthtse. Ecole Centrale, Paris: Rapport LEIS.

Erlenkotter, D. (1978) A dual-based procedure for uncapacitated facility location. Operations Research, 26,
992-1009.

Geoffrion, A. M. (1974) Langrangean relaxation for integer programming. Mathematical Programming Study, 2,
82-l 14.

Grigoriadis, M. D. & Hsu, T. (1979) RNET-The Rutgers minimum cost network flow subroutines, Rutgers
University, New Brunswick, New Jersey.

Ibaraki, T. (1987) Enumerative approaches to combinatorial optimization. Annals of Operations Research, l&11.
Krarup, J. & Pruzan, P. M. (1983) The simple plant location problem: Survey and synthesis. European Journal

of Operational Research, 12, 36-81.
Van Roy, T. J. & Erlenkotter, T. (1982) A dual-based procedure for dynamic facility location. Management Science,

28, 1091-l 105.

